Gate-tuned anomalous Hall effect driven by Rashba splitting in intermixed LaAlO3/GdTiO3/SrTiO3
نویسندگان
چکیده
منابع مشابه
Anomalous Hall Effect in a 2D Rashba Ferromagnet.
Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the a...
متن کاملAnomalous Hall effect
We present a review of experimental and theoretical studies of the anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical work, both playing a crucial role, has been at the heart of these advances. ...
متن کاملAnomalous Hall effect from frustration-tuned scalar chirality distribution in Pr2Ir2O7.
We study the anomalous Hall effect due to noncoplanar magnetism on a pyrochlore structure. We focus on the frustration-induced spatial inhomogeneity of different magnetic low-temperature regimes, between which one can efficiently tune using an external magnetic field. We incorporate nonmagnetic scattering on a phenomenological level so that we can distinguish between the effects of short-range ...
متن کاملSpin Hall current driven by quantum interferences in mesoscopic Rashba rings.
We propose an all-electrical nanostructure where pure spin current is induced in the transverse voltage probes attached to a quantum-coherent ballistic one-dimensional ring when unpolarized charge current is injected through its longitudinal leads. Tuning of the Rashba spin-orbit coupling in a semiconductor heterostructure hosting the ring generates quasiperiodic oscillations of the predicted s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2021
ISSN: 2045-2322
DOI: 10.1038/s41598-021-89767-3